Attraction between DNA molecules mediated by multivalent ions.

نویسندگان

  • E Allahyarov
  • G Gompper
  • H Löwen
چکیده

The effective force between two parallel DNA molecules is calculated as a function of their mutual separation for different valencies of counterion and salt ions and different salt concentrations. Computer simulations of the primitive model are used and the shape of the DNA molecules is accurately modeled using different geometrical shapes. We find that multivalent ions induce a significant attraction between the DNA molecules whose strength can be tuned by the averaged valency of the ions. The physical origin of the attraction is traced back either to electrostatics or to entropic contributions. For multivalent counterions and monovalent salt ions, we find a salt-enhanced repulsion effect: the force is first attractive but gets repulsive with increasing salt concentration. Furthermore, we show that the multivalent-ion-induced attraction does not necessarily correlate with DNA overcharging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules.

All atom molecular dynamics simulations with explicit water were done to study the interaction between two parallel double-stranded DNA molecules in the presence of the multivalent counterions putrescine (2+), spermidine (3+), spermine (4+) and cobalt hexamine (3+). The inter-DNA interaction potential is obtained with the umbrella sampling technique. The attractive force is rationalized in term...

متن کامل

DNA like-charge attraction and overcharging by divalent counterions in the presence of divalent co-ions.

Strongly correlated electrostatics of DNA systems has drawn the interest of many groups, especially the condensation and overcharging of DNA by multivalent counterions. By adding counterions of different valencies and shapes, one can enhance or reduce DNA overcharging. In this paper, we focus on the effect of multivalent co-ions, specifically divalent co-ions such as SO[Formula: see text]. A co...

متن کامل

Counterion and pH-Mediated Structural Changes in Charged Biopolymer Gels.

DNA solutions and gels exhibit a wide range of phenomena, many of which have not yet been fully understood. In the presence of multivalent counterions, attraction between charged DNA strands occurs. Increasing the concentration of multivalent ions leads to a decrease of the osmotic pressure, and a sufficiently high ion concentration results in the precipitation of the polymer. Replacing the mon...

متن کامل

Attraction between neutral dielectrics mediated by multivalent ions in an asymmetric ionic fluid.

We study the interaction between two neutral plane-parallel dielectric bodies in the presence of a highly asymmetric ionic fluid, containing multivalent as well as monovalent (salt) ions. Image charge interactions, due to dielectric discontinuities at the boundaries, as well as effects from ion confinement in the slit region between the surfaces are taken fully into account, leading to image-ge...

متن کامل

Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 69 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004